Convert Sorted Array to Binary Search Tree LeetCode (Sorted Array to Balanced BST)

Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.

height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.

 Example 1:

Input: nums = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
Explanation: [0,-10,5,null,-3,null,9] is also accepted:

Example 2:

Input: nums = [1,3]
Output: [3,1]
Explanation: [1,3] and [3,1] are both a height-balanced BSTs.

 NOTE:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums is sorted in a strictly increasing order.
This problem is popular in LeetCode and GeeksForGeeks A collection of hundreds of interview questions and solutions are available in our blog at Interview Question Solutions

Solution:

Source: Java
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package com.alg.leetup;
/**
*
* Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
*
*
* Solution 1:
* Recursive approach:
* 1)Get the middle of the array and make it as a root
* 2) left half (excluding root) will be the left subtree of root
* 3) right half(excluding root) will be the right subtree of root
* 4)recursively make BST from left half
* 5)recursively make BST from right half
*
*
* @author rbaral
*/
public class SortedArrayToBST {
public TreeNode sortedArrayToBST(int[] nums) {
if(nums==null || nums.length==0){
return null;
}
TreeNode root = null;
root = getBST(nums, 0, nums.length-1);
return root;
}
public TreeNode getBST(int[] nums, int start, int end){
if(nums.length==0 ||(start>end)){
return null;
}
else if(nums.length==1){
return new TreeNode(nums[0]);
}else{
//get the middle
int mid = (start+end)/2;
TreeNode root = new TreeNode(nums[mid]);
root.left = getBST(nums, start, mid-1);
root.right = getBST(nums,mid+1, end);
return root;
}
}
}

No comments:

Post a Comment