Array Equilibrium Point LeetCode

A zero-indexed array A consisting of N integers is given. 

 An equilibrium index of this array is any integer P such that 0 ≤ P < N and the sum of elements of lower indices is equal to the sum of elements of higher indices, i.e. 

A[0] + A[1] + ... + A[P−1] = A[P+1] + ... + A[N−2] + A[N−1].

Sum of zero elements is assumed to be equal to 0. This can happen if P = 0 or if P = N−1. For example, consider the following array A consisting of N = 8 elements:

  A[0] = -1

  A[1] =  3

  A[2] = -4

  A[3] =  5

  A[4] =  1

  A[5] = -6

  A[6] =  2

  A[7] =  1

P = 1 is an equilibrium index of this array, because:

A[0] = −1 = A[2] + A[3] + A[4] + A[5] + A[6] + A[7]

P = 3 is an equilibrium index of this array, because:

A[0] + A[1] + A[2] = −2 = A[4] + A[5] + A[6] + A[7]

P = 7 is also an equilibrium index, because:

A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] = 0

and there are no elements with indices greater than 7.

P = 8 is not an equilibrium index, because it does not fulfill the condition 0 ≤ P < N.

Write a function:

class Solution { public int solution(int[] A); }

that, given a zero-indexed array A consisting of N integers, returns any of its equilibrium indices. 

The function should return −1 if no equilibrium index exists. For example, given array A shown above, the function may return 1, 3 or 7, as explained above.

Assume that:

  • N is an integer within the range [0..100,000];
  • each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].

Complexity:

  • expected worst-case time complexity is O(N);
  • expected worst-case space complexity is O(N), 
  •  beyond input storage (not counting the storage required for input arguments).

NOTE: Elements of input arrays can be modified.

A similar flavor questions are very popular in LeetCode and GeeksForGeeks A collection of hundreds of interview questions and solutions are available in our blog at Interview Question

Solution
/**
*
* A zero-indexed array A consisting of N integers is given.
* An equilibrium index of this array is any integer P such that 0 ≤ P < N and
* the sum of elements of lower indices is equal to the sum of elements of higher indices, i.e.
A[0] + A[1] + ... + A[P−1] = A[P+1] + ... + A[N−2] + A[N−1].
Sum of zero elements is assumed to be equal to 0. This can happen if P = 0 or if P = N−1.
For example, consider the following array A consisting of N = 8 elements:
A[0] = -1
A[1] = 3
A[2] = -4
A[3] = 5
A[4] = 1
A[5] = -6
A[6] = 2
A[7] = 1
P = 1 is an equilibrium index of this array, because:
A[0] = −1 = A[2] + A[3] + A[4] + A[5] + A[6] + A[7]
P = 3 is an equilibrium index of this array, because:
A[0] + A[1] + A[2] = −2 = A[4] + A[5] + A[6] + A[7]
P = 7 is also an equilibrium index, because:
A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] = 0
and there are no elements with indices greater than 7.
P = 8 is not an equilibrium index, because it does not fulfill the condition 0 ≤ P < N.
Write a function:
class Solution { public int solution(int[] A); }
that, given a zero-indexed array A consisting of N integers, returns any of its equilibrium indices.
* The function should return −1 if no equilibrium index exists.
For example, given array A shown above, the function may return 1, 3 or 7, as explained above.
Assume that:
N is an integer within the range [0..100,000];
each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(N),
* beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
*
*
* @author rbaral
*/
public class ArrayEquillibriumPoint {
public static int solution(int[] A) {
// write your code in Java SE 8
int[] frontSum = new int[A.length];
int[] backSum = new int[A.length];
frontSum[0] = 0;
backSum[backSum.length-1] = 0;
for(int i=1;i<A.length;i++){
frontSum[i] = frontSum[i-1] + A[i-1];
System.out.println("front sum for "+i+".."+frontSum[i]);
}
for(int i=A.length-2;i>=0;i--){
backSum[i] = backSum[i+1] + A[i+1];
System.out.println("back sum for "+i+"..."+backSum[i]);
}
for(int i=0;i<A.length;i++){
if(frontSum[i] == backSum[i]){
System.out.println("Equillibrium point at:"+i+" left sum:"+frontSum[i]+" right sum:"+backSum[i]);
return i;
}
}
return -1;
}
public static void main(String args[]){
int[] arr = {-1, 3, -4, 5, 1, -6, 2, 1};
System.out.println("eq point is:"+solution(arr));
}
}

No comments:

Post a Comment