Best Time to Buy and Sell Stock with Transfer Fee LeetCode

ProblemYou are given an array prices where prices[i] is the price of a given stock on the ith day, and an integer fee representing a transaction fee.

Find the maximum profit you can achieve. You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction.

Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).

 Example 1:

Input: prices = [1,3,2,8,4,9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
- Buying at prices[0] = 1
- Selling at prices[3] = 8
- Buying at prices[4] = 4
- Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

Example 2:

Input: prices = [1,3,7,5,10,3], fee = 3
Output: 6

 Constraints:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

This problem is popular in LeetCodeA collection of hundreds of interview questions and solutions are available in our blog at Interview Question

Solution:

/**
Your are given an array of integers prices, for which the i-th element is the price of a given stock on day i; and a non-negative integer fee representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
Buying at prices[0] = 1
Selling at prices[3] = 8
Buying at prices[4] = 4
Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
Note:
0 < prices.length <= 50000.
0 < prices[i] < 50000.
0 <= fee < 50000.
*/
public class BestTimeToBuySellStockWithTransFee{
public int maxProfit(int[] prices, int fee) {
int sellAction = 0, buyAction = Integer.MIN_VALUE;
for(int price:prices){
int lastAction = sellAction;
sellAction = Math.max(buyAction + price, sellAction);
buyAction = Math.max(buyAction, lastAction - price - fee);
}
return sellAction;
}
}

No comments:

Post a Comment