// Say you have an array for which the ith element is the price of a given stock on day i.
// If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
// Example 1:
// Input: [7, 1, 5, 3, 6, 4]
// Output: 5
// max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)
// Example 2:
// Input: [7, 6, 4, 3, 1]
// Output: 0
// In this case, no transaction is done, i.e. max profit = 0.
public class BestTimeToBuyAndSellStock {
public int maxProfit(int[] prices) {
//Kadane's algorithm
if(prices.length == 0) {
return 0;
}
int max = 0;
int min = prices[0];
for(int i = 1; i < prices.length; i++) {
if(prices[i] > min) {
max = Math.max(max, prices[i] - min);
} else {
min = prices[i];
}
}
return max;
}
}
// If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
// Example 1:
// Input: [7, 1, 5, 3, 6, 4]
// Output: 5
// max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)
// Example 2:
// Input: [7, 6, 4, 3, 1]
// Output: 0
// In this case, no transaction is done, i.e. max profit = 0.
public class BestTimeToBuyAndSellStock {
public int maxProfit(int[] prices) {
//Kadane's algorithm
if(prices.length == 0) {
return 0;
}
int max = 0;
int min = prices[0];
for(int i = 1; i < prices.length; i++) {
if(prices[i] > min) {
max = Math.max(max, prices[i] - min);
} else {
min = prices[i];
}
}
return max;
}
}
No comments:
Post a Comment