// Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
// Example:
// nums = [1, 2, 3]
// target = 4
// The possible combination ways are:
// (1, 1, 1, 1)
// (1, 1, 2)
// (1, 2, 1)
// (1, 3)
// (2, 1, 1)
// (2, 2)
// (3, 1)
// Note that different sequences are counted as different combinations.
// Therefore the output is 7.
// Follow up:
// What if negative numbers are allowed in the given array?
// How does it change the problem?
// What limitation we need to add to the question to allow negative numbers?
public class CombinationSumIV {
public int combinationSum4(int[] nums, int target) {
int[] dp = new int[target + 1];
dp[0] = 1;
for(int i = 1; i < dp.length; i++) {
for(int j = 0; j < nums.length; j++) {
if(i >= nums[j]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
}
// Example:
// nums = [1, 2, 3]
// target = 4
// The possible combination ways are:
// (1, 1, 1, 1)
// (1, 1, 2)
// (1, 2, 1)
// (1, 3)
// (2, 1, 1)
// (2, 2)
// (3, 1)
// Note that different sequences are counted as different combinations.
// Therefore the output is 7.
// Follow up:
// What if negative numbers are allowed in the given array?
// How does it change the problem?
// What limitation we need to add to the question to allow negative numbers?
public class CombinationSumIV {
public int combinationSum4(int[] nums, int target) {
int[] dp = new int[target + 1];
dp[0] = 1;
for(int i = 1; i < dp.length; i++) {
for(int j = 0; j < nums.length; j++) {
if(i >= nums[j]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
}
No comments:
Post a Comment