/**
Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. In other words, given two integer arrays val[0..n-1] and wt[0..n-1] which represent values and weights associated with n items respectively. Also given an integer W which represents knapsack capacity, find out the maximum value subset of val[] such that sum of the weights of this subset is smaller than or equal to W. You cannot break an item, either pick the complete item, or donĂ¢€™t pick it (0-1 property).
*/
public class KnapSack01{
// Returns the maximum value that can be put in a knapsack of capacity W
static int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[][] = new int[n+1][W+1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i==0 || w==0)
K[i][w] = 0;
else if (wt[i-1] <= w) //if this item fits with available weight; wt[i-1] because weight index starts with zero
K[i][w] = Math.max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]);
else
K[i][w] = K[i-1][w];
}
}
return K[n][W];
}
public static void main(String args[])
{
int val[] = new int[]{60, 100, 120};
int wt[] = new int[]{10, 20, 30};
int W = 50;
int n = val.length;
System.out.println(knapSack(W, wt, val, n)); //220
}
}
Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. In other words, given two integer arrays val[0..n-1] and wt[0..n-1] which represent values and weights associated with n items respectively. Also given an integer W which represents knapsack capacity, find out the maximum value subset of val[] such that sum of the weights of this subset is smaller than or equal to W. You cannot break an item, either pick the complete item, or donĂ¢€™t pick it (0-1 property).
*/
public class KnapSack01{
// Returns the maximum value that can be put in a knapsack of capacity W
static int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[][] = new int[n+1][W+1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i==0 || w==0)
K[i][w] = 0;
else if (wt[i-1] <= w) //if this item fits with available weight; wt[i-1] because weight index starts with zero
K[i][w] = Math.max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]);
else
K[i][w] = K[i-1][w];
}
}
return K[n][W];
}
public static void main(String args[])
{
int val[] = new int[]{60, 100, 120};
int wt[] = new int[]{10, 20, 30};
int W = 50;
int n = val.length;
System.out.println(knapSack(W, wt, val, n)); //220
}
}
No comments:
Post a Comment