// Find the contiguous subarray within an array (containing at least one number)
//which has the largest sum.
// For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
// the contiguous subarray [4,-1,2,1] has the largest sum = 6.
public class MaximumSubarray {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int max = dp[0];
for(int i = 1; i < nums.length; i++) {
dp[i] = Math.max(nums[i], nums[i] + dp[i-1]);//nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
max = Math.max(dp[i], max);
}
return max;
}
}
//which has the largest sum.
// For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
// the contiguous subarray [4,-1,2,1] has the largest sum = 6.
public class MaximumSubarray {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int max = dp[0];
for(int i = 1; i < nums.length; i++) {
dp[i] = Math.max(nums[i], nums[i] + dp[i-1]);//nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
max = Math.max(dp[i], max);
}
return max;
}
}
No comments:
Post a Comment