//Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right
//which minimizes the sum of all numbers along its path.
//Note: You can only move either down or right at any point in time.
//Example 1:
//[[1,3,1],
//[1,5,1],
//[4,2,1]]
//Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.
class MinimumPathSum {
public int minPathSum(int[][] grid) {
for(int i = 1; i < grid.length; i++) {
grid[i][0] += grid[i - 1][0];
}
for(int i = 1; i < grid[0].length; i++) {
grid[0][i] += grid[0][i - 1];
}
for(int i = 1; i < grid.length; i++) {
for(int j = 1; j < grid[0].length; j++) {
grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
}
}
return grid[grid.length - 1][grid[0].length - 1];
}
}
//which minimizes the sum of all numbers along its path.
//Note: You can only move either down or right at any point in time.
//Example 1:
//[[1,3,1],
//[1,5,1],
//[4,2,1]]
//Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.
class MinimumPathSum {
public int minPathSum(int[][] grid) {
for(int i = 1; i < grid.length; i++) {
grid[i][0] += grid[i - 1][0];
}
for(int i = 1; i < grid[0].length; i++) {
grid[0][i] += grid[0][i - 1];
}
for(int i = 1; i < grid.length; i++) {
for(int j = 1; j < grid[0].length; j++) {
grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
}
}
return grid[grid.length - 1][grid[0].length - 1];
}
}
No comments:
Post a Comment