/**
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted from left to right.
The first integer of each row is greater than the last integer of the previous row.
Example 1:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
Output: true
Example 2:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
Output: false
*/
public class SearchMatrix{
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix==null || matrix.length<1){
return false;
}
if (matrix[0] == null || matrix[0].length == 0){
return false;
}
//start with first row and last column
int row = 0, col = matrix[0].length-1;
while(row<matrix.length && col>=0){
int val = matrix[row][col];
if(val==target){
return true;
}else if(val<target){
row++;
}else{
col--;
}
}
return false;
}
}
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted from left to right.
The first integer of each row is greater than the last integer of the previous row.
Example 1:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
Output: true
Example 2:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
Output: false
*/
public class SearchMatrix{
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix==null || matrix.length<1){
return false;
}
if (matrix[0] == null || matrix[0].length == 0){
return false;
}
//start with first row and last column
int row = 0, col = matrix[0].length-1;
while(row<matrix.length && col>=0){
int val = matrix[row][col];
if(val==target){
return true;
}else if(val<target){
row++;
}else{
col--;
}
}
return false;
}
}
No comments:
Post a Comment