/**
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
*/
import java.util.*;
class Node{
Node prev;
Node next;
int key;
int value;
public Node(int key, int value) {
this.key = key;
this.value = value;
this.prev = null;
this.next = null;
}
}
class LRUCache {
private int capacity;
private HashMap<Integer, Node> hs = new HashMap<Integer, Node>();
//two dummy nodes represent as head and tail
private Node head = new Node(-1, -1);
private Node tail = new Node(-1, -1);
public LRUCache(int capacity) {
this.capacity = capacity;
tail.prev = head;
head.next = tail;
}
public int get(int key) {
if( !hs.containsKey(key)) {
return -1;
}
// remove current
Node current = hs.get(key);
current.prev.next = current.next;
current.next.prev = current.prev;
// move current to tail
move_to_tail(current);
return hs.get(key).value;
}
public void put(int key, int value) {
if( get(key) != -1) {
hs.get(key).value = value;
return;
}
if (hs.size() == capacity) {
hs.remove(head.next.key);
head.next = head.next.next;
head.next.prev = head;
}
Node insert = new Node(key, value);
//put to map
hs.put(key, insert);
//move fresh node to tail
move_to_tail(insert);
}
private void move_to_tail(Node current) {
current.prev = tail.prev;//tail is a dummy node so insert before tail
tail.prev = current;
current.prev.next = current;
current.next = tail;
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
}
public class LRUCacheDemo{
public static void main(String[] args){
LRUCache cache = new LRUCache( 2 );
cache.put(1, 1);
cache.put(2, 2);
System.out.println(cache.get(1)); // returns 1
cache.put(3, 3); // evicts key 2
System.out.println(cache.get(2)); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
System.out.println(cache.get(1)); // returns -1 (not found)
System.out.println(cache.get(3)); // returns 3
System.out.println(cache.get(4)); // returns 4
}
}
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
*/
import java.util.*;
class Node{
Node prev;
Node next;
int key;
int value;
public Node(int key, int value) {
this.key = key;
this.value = value;
this.prev = null;
this.next = null;
}
}
class LRUCache {
private int capacity;
private HashMap<Integer, Node> hs = new HashMap<Integer, Node>();
//two dummy nodes represent as head and tail
private Node head = new Node(-1, -1);
private Node tail = new Node(-1, -1);
public LRUCache(int capacity) {
this.capacity = capacity;
tail.prev = head;
head.next = tail;
}
public int get(int key) {
if( !hs.containsKey(key)) {
return -1;
}
// remove current
Node current = hs.get(key);
current.prev.next = current.next;
current.next.prev = current.prev;
// move current to tail
move_to_tail(current);
return hs.get(key).value;
}
public void put(int key, int value) {
if( get(key) != -1) {
hs.get(key).value = value;
return;
}
if (hs.size() == capacity) {
hs.remove(head.next.key);
head.next = head.next.next;
head.next.prev = head;
}
Node insert = new Node(key, value);
//put to map
hs.put(key, insert);
//move fresh node to tail
move_to_tail(insert);
}
private void move_to_tail(Node current) {
current.prev = tail.prev;//tail is a dummy node so insert before tail
tail.prev = current;
current.prev.next = current;
current.next = tail;
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
}
public class LRUCacheDemo{
public static void main(String[] args){
LRUCache cache = new LRUCache( 2 );
cache.put(1, 1);
cache.put(2, 2);
System.out.println(cache.get(1)); // returns 1
cache.put(3, 3); // evicts key 2
System.out.println(cache.get(2)); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
System.out.println(cache.get(1)); // returns -1 (not found)
System.out.println(cache.get(3)); // returns 3
System.out.println(cache.get(4)); // returns 4
}
}
No comments:
Post a Comment