// Given a binary tree, find the maximum path sum.
// For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
// For example:
// Given the below binary tree,
// 1
// / \
// 2 3
// Return 6.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class BinaryTreeMaximumPathSum {
int max = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
maxPathSumRecursive(root);
return max;
}
private int maxPathSumRecursive(TreeNode root) {
if(root == null) {
return 0;
}
int left = Math.max(maxPathSumRecursive(root.left), 0);
int right = Math.max(maxPathSumRecursive(root.right), 0);
max = Math.max(max, root.val + left + right);
return root.val + Math.max(left, right);
}
}
// For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
// For example:
// Given the below binary tree,
// 1
// / \
// 2 3
// Return 6.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class BinaryTreeMaximumPathSum {
int max = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
maxPathSumRecursive(root);
return max;
}
private int maxPathSumRecursive(TreeNode root) {
if(root == null) {
return 0;
}
int left = Math.max(maxPathSumRecursive(root.left), 0);
int right = Math.max(maxPathSumRecursive(root.right), 0);
max = Math.max(max, root.val + left + right);
return root.val + Math.max(left, right);
}
}
No comments:
Post a Comment