Kth smallest Element in Binary Search Tree

/**
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.

Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.

Example 1:

Input: root = [3,1,4,null,2], k = 1
   3
  / \
 1   4
  \
   2
Output: 1
Example 2:

Input: root = [5,3,6,2,4,null,null,1], k = 3
       5
      / \
     3   6
    / \
   2   4
  /
 1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
*/
public class KthSmallestInBST{
public int kthSmallest(TreeNode root, int k) {
      int count = countNodes(root.left);
        if (k <= count) {
            return kthSmallest(root.left, k);
        } else if (k > count + 1) {
            return kthSmallest(root.right, k-1-count); // 1 is counted as current node
        }
       
        return root.val;
    }
   
    public int countNodes(TreeNode n) {
        if (n == null) return 0;
        return 1 + countNodes(n.left) + countNodes(n.right);
    }
}

No comments:

Post a Comment